

Towards the Optimization of Nanoporous Copolymer Membranes for Use as Heavy Metal Adsorbers

Ryan J. LaRue^a, Blake Patterson^a, William A. Phillip^b, & David R. Latulippe^a

^aDepartment of Chemical Engineering, McMaster University

^bDepartment of Chemical and Biomolecular Engineering, University of Notre Dame

Introduction & Motivations

- Removal of small, aqueous contaminants is a substantial challenge in water and wastewater treatment
- ► Species such as dissolved heavy metal ions, pharmaceuticals and personal care products (PCPPs) are particularly concerning due to their potential toxicity to humans and aquatic ecosystems
- ► There is a global need for technologies which can easily and economically remove such contaminants
 - Membranes are playing an increasingly-important role
- ► Developing membrane technologies for water treatment include:
 - Membrane bioreactors
 - Mixed matrix membranes
 - Antifouling technologies
 - > Adsorptive membranes

- ▶ In adsorptive membranes, the selective capture of difficult-toremove aqueous contaminants can be enabled by introducing toxin-specific binding sites (i.e. for targeting heavy metals)
 - > Facilitates a two-fold separation ability
 - Reduced unfavorable diffusional mass transfer limitations
 - adsorbers

Nanoporous Block Copolymer Membranes

- ► The self-assembly and nonsolvent-induced phase separation technique (SNIPS) can be used to create block copolymer membranes with tunable and well-defined nanostructures
- ► Membrane formation via the SNIPS procedure relies on the incompatibility of polymer "blocks" in order to form a structured, nanoporous system
- ► Microphase separation and membrane formation relies on the copolymer composition, kinetic/ thermodynamic considerations

- poly(AN-r-OEGMA-r-GMA) poly(acrylonitrile-r-oligo(ethylene glycol) methyl ether methacrylate-*r*-glycidyl methacrylate) copolymer
- ► Free radical polymerization with AIBN initiator $ightharpoonup n \approx 8, x \approx 0.2, y \approx 0.4, z \approx 0.4$
- Membrane cast on ultrafiltration membrane substrate using dimethyl sulfoxide solvent
- Immersion in isopropanol (non-solvent) induces the membrane to "self-assemble"

Membrane Synthesis

- The tunable nature of poly(AN-r-OEGMA-r-GMA) membranes makes them amenable to chemical modification
- For example, amino acids have shown to form complexes with heavy metals

 \triangleright L-cysteine (R = SH): Pb(II), Cd(II), Cu(II)

► Amino acid moieties can be grafted onto the copolymer membranes:

- ► A 2⁵⁻² fractional-factorial design-of-experiments architecture was used to improve the conjugation of cysteine onto the membranes
- ► Degree of functionalization estimated via static lead adsorption capacity experiments

Factor	Name	-/+
A	Reaction Temperature	40°C / 60°C
В	[Cysteine]	0.01 M / 0.1 M
C	[ZnCl ₂ Catalyst]	5 mol% / 10 mol%
D = AB	Reaction Time	6 h / 18 h
E = AC	Reducing Agent* (DL-dithiothreitol)	No / Yes

(pH = 8) was used as a reducing agent. ightharpoonup Unmodified membrane discs (diameter = 14 mm) were reacted according to the DOE architecture Cys-modified membranes were immersed in agitated 25 ppm Pb solutions (pH = 5) for 18 h ► Pb adsorption was quantified via inductively-coupled plasma optical emission spectroscopy (ICP-OES) at

 $\lambda = 220.353 \text{ nm}$

*0.02 M DL-dithiothreitol in 0.02 M HEPES buffer

Control (Substrate) Poorest Formulation Optimal Formulation Membrane Adsorptive Capacity (g Pb/m²)

Each experiment was performed in at least duplicate

- Result: greater lead adsorption capacities (i.e. more bound cysteine) can be obtained:
 - Using the reducing agent, at higher temperature levels, using lower cysteine concentrations and lower reaction times
 - The catalyst concentration is insignificant
- ► The DOE-"optimized" adsorption capacity was found to be 115 ± 2 mg Pb/m² membrane

Membrane Characterization

Composition Analysis

- ► Atomic composition of the membrane for both native and cysteine-modified poly(AN-r-OEGMA-r-GMA) copolymers
 - Analysis via x-ray photoelectron spectroscopy (XPS)

Element	Carbon	Oxygen	Nitrogen	Sulfur
Peaks	C1s	O1s	N1s	S2p
Unmodified Membrane [†]	69.22%	23.27%	6.62%	0.12%
Cys-Modified Membrane [†]	68.62%	21.88%	8.53%	0.43%

Result: 70% of GMA functional groups are grafted with cysteine

Pore Size Characterization

- ► Pore size characterization via solute rejection experiments:
 - \triangleright Feed solution: 1 g/L polyethylene glycols/oxides (1–35 kDa)

- lacktriangle Actual rejection coefficients R_a
- Calculated molecular weight cutoff (MWCO) values:
 - Unmodified membrane: $MWCO \approx 5.1 \text{ kDa} \approx 5.3 \text{ nm}$
 - Cys-modified membrane: $MWCO \approx 20.3 \text{ kDa} \approx 8.3 \text{ nm}$
- lacktriangle Membrane permeabilities, L_p :
 - \triangleright Unmodified membrane: $L_p = 0.36 \pm 0.05 \text{ LMH/bar}$
 - \triangleright Cys-modified membrane: $L_p = 0.86 \pm 0.05 \; \mathrm{LMH/bar}$
- Result: Evidence to suggest a change in pore structure during the reaction

Acknowledgements

The authors would like to acknowledge the following individuals and groups:

► The Biointerfaces Institute (McMaster University) for use of their equipment.

