

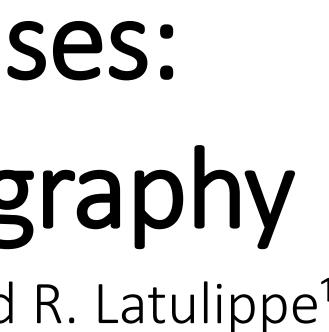
Integrated downstream processing of therapeutic adenoviruses: optimizing enzymatic DNA digestion and membrane chromatography

Karina Kawka¹, A. Noelle Wilton¹, Evan Wright¹, Natasha Kazhdan², Maria Fe C. Medina², Brian Lichty², Raja Ghosh¹, David R. Latulippe¹

1. Department of Chemical Engineering; 2. Robert E. Fitzhenry Vector Laboratory, McMaster Immunology Research Centre. McMaster University, Hamilton, Ontario.

- - Denarase (c-LEcta), using a Design-of-Experiments (DOE);

• Denarase was shown to be a more economic alternative to Benzonase for DNA digestion due to its lower cost and better performance on reducing DNA concentration. • Small-scale MC in conjuction with DOE methods are a powefull tool for process development as it allows the evaluation of multiple conditions in parallel. Benzonase concentrations of 100 U/mL are commonly reported². Using LFMC, we successfully purified lysates prepared with relatively low amounts of nuclease (10 U/mL). • Future work will focus on scaling-up the LFMC devices and processes for the purification of pilot-scale batches of adenovirus.


Conclusions

DNA Digestion Conditions			
[Denarase] (U/mL)	Time (h)		[(n
1	4		
10	1		
10	24		
100	4		
0	0		

DNA Amount		Virus Amount	
Before MC (ng/10 ¹⁰ IFU)	After MC (ng/10 ¹⁰ IFU)	Before MC (total IFU)	After MC (total IFU)
591	231 (39%)	3.2×10 ⁸	1.5×10 ⁸ (45%)
357	183 (51%)	5.7×10 ⁸	3.3×10 ⁸ (58%)
16,185	NA	2.7×10 ⁶	3.9×10 ⁵ (14%)
701	387 (55%)	1.2×10 ⁸	7.3×10 ⁷ (59%)
9,099	1,386 (15%)	6.5×10 ⁸	4.1×10 ⁸ (64%)

Acknowledgements

Attendance at the Summit4CI was made possible by a BioCanRx travel award. The 'Alliance for Biotherapeutics Manufacturing Innovation' (through the Ontario Research Fund: Research Excellence program) and the Natural Sciences and Engineering Research Council for providing funding.

NCE RCE

Chromatography Performance					
Component	Feed lysate	Virus elution peak			
Total Virus (IFU)	1.6x10 ¹⁰	5.8x10 ⁹			
DNA (ng/10 ¹⁰ IFU)	774	139			
Protein (µg/10 ¹⁰ IFU)	1,514	144			